used for jumiled chart verification of Kind Kind

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

CPG-EE-2018 (Chemistry)-(SET-X)

A		10365 Sr. No.
Time : 11/2 Hours	Total Questions: 100	Max. Marks : 100
Roll No. (in figures)	(in words)	200000000000000000000000000000000000000
Candidate's Name		Date of Birth-
Father's Name —	Mother's Name	(2000) September 1780,743 c
Date of Exam :		
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- All questions are compulsory and carry equal marks. The candidates are required to attempt all questions.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- 6. There will be negative marking. Each correct answer will be awarded one full mark and each incorrect answer will be negatively marked for which the candidate will get ¼ discredit. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- Before answering the questions, the candidates should ensure that they have been supplied correct & complete question booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

(1) 1.6×10^{-24} m (3) 3.2×10^{-28} m (4) 4.8×10^{-26} m 2. Which set of quantum numbers is not suitable to an electron? (1) $1,0,0,+\frac{1}{2}$ (2) $1,0,0,-\frac{1}{2}$ (3) $2,0,0,+\frac{1}{2}$ (4) $1,1,1,+\frac{1}{2}$ 3. What is the correct order of radii? (1) $O^2 - > F - > O > F$ (2) $O^2 - > F - > F > O$ (3) $F - > O^2 - > F > O$ (4) $O^2 - > O > F - > F$ 4. Effective nuclear charge of an ion is: (1) Nuclear charge (2) Nuclear charge + Screening constant (3) Nuclear charge - Screening constant (4) Nuclear charge + Charge on ion 5. Which of the following molecule does not possess permanent dipole moment? (1) NF_3 (2) CH_2CI_2 (3) NO_2 (4) BF_3 6. According to VSEPR theory shape of CIF_3 is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) $MgSO_4.7H_2O$ (2) $Na_2SO_4.10H_2O$ (3) $CuSO_4.5H_2O$ (4) $FeSO_4.7H_2O$	1.	Wh	at is the wave	length	of a ball weigl	ning 2	00 g and movi	ng at a	a speed of 5 m/h?
 Which set of quantum numbers is not suitable to an electron? (1) 1, 0, 0, +½ (2) 1, 0, 0, -½ (3) 2, 0, 0, +½ (4) 1, 1, 1, +½ What is the correct order of radii? (1) O²->F > O>F (2) O²->F->F Effective nuclear charge of an ion is: (1) Nuclear charge (2) Nuclear charge + Screening constant (3) Nuclear charge + Screening constant (4) Nuclear charge + Charge on ion Which of the following molecule does not possess permanent dipole moment? (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ According to VSEPR theory shape of CIF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar Maximum number of water molecules that one water molecule can hold throughlydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 		(1)	$1.6 \times 10^{-24} \text{ m}$			(2)	2.3×10 ⁻³⁰ m		
(1) 1,0,0,+½ (2) 1,0,0,-½ (3) 2,0,0,+½ (4) 1,1,1,+½ 3. What is the correct order of radii? (1) O²->F->O>F (2) O²->F->F>O (3) F->O²->F>O (4) O²->O>F->F 4. Effective nuclear charge of an ion is: (1) Nuclear charge (2) Nuclear charge + Screening constant (3) Nuclear charge - Screening constant (4) Nuclear charge + Charge on ion 5. Which of the following molecule does not possess permanent dipole moment? (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ 6. According to VSEPR theory shape of CIF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O		(3)	$3.2\!\times\!10^{-28}~m$			(4)	$4.8 \times 10^{-26} \ m$		
 (3) 2,0,0,+½ (4) 1,1,1,+½ 3. What is the correct order of radii? (1) O²->F->O>F (2) O²->F->F>O (3) F->O²->F>O (4) O²->O>F->F (5) O²->O>F->F (6) O²->O>F->F (7) Nuclear charge of an ion is: (8) Nuclear charge + Screening constant (9) Nuclear charge + Charge on ion (1) Nuclear charge + Charge on ion (1) Nuclear charge + Charge on ion (1) NF3 (2) CH2Cl2 (3) NO2 (4) BF3 (5) According to VSEPR theory shape of CIF3 is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight (5) Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF (4) Glauber's salt is: (1) MgSO4.7H2O (2) Na2SO4.10H2O 	2.	Wh	ich set of quar	ıtum r	numbers is not	suital	ole to an electro	n?	
 3. What is the correct order of radii? (1) O²->F->O>F (2) O²->F->F>O (3) F->O²->F>O (4) O²->O>F->F 4. Effective nuclear charge of an ion is: (1) Nuclear charge (2) Nuclear charge + Screening constant (3) Nuclear charge - Screening constant (4) Nuclear charge + Charge on ion 5. Which of the following molecule does not possess permanent dipole moment? (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ 6. According to VSEPR theory shape of CIF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄·7H₂O (2) Na₂SO₄·10H₂O 	-	(1)	1, 0, 0, +1/2			(2)	1, 0, 0, -1/2		
 (1) O²->F->O>F (2) O²->F->F>O (3) F->O²->F>O (4) O²->O>F->F (5) F->O²->F>O (6) O²->O>F->F (7) Nuclear charge of an ion is: (8) Nuclear charge + Screening constant (9) Nuclear charge + Screening constant (1) Nuclear charge + Charge on ion (1) NF3 (2) CH2Cl2 (3) NO2 (4) BF3 (5) According to VSEPR theory shape of ClF3 is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar (5) Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight (5) Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF (4) Glauber's salt is: (1) MgSO4.7H2O (2) Na2SO4.10H2O 		(3)	2, 0, 0, +1/2			(4)	1, 1, 1, +1/2		
 (3) F⁻ > O²⁻ > F > O (4) O²⁻ > O > F⁻ > F 4. Effective nuclear charge of an ion is: (1) Nuclear charge (2) Nuclear charge + Screening constant (3) Nuclear charge - Screening constant (4) Nuclear charge + Charge on ion 5. Which of the following molecule does not possess permanent dipole moment? (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ 6. According to VSEPR theory shape of ClF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 	3.	Wh	at is the correc	ct orde	er of radii ?				
 4. Effective nuclear charge of an ion is: (1) Nuclear charge (2) Nuclear charge + Screening constant (3) Nuclear charge - Screening constant (4) Nuclear charge + Charge on ion 5. Which of the following molecule does not possess permanent dipole moment? (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ 6. According to VSEPR theory shape of CIF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 		(1)	$O^{2-} > F^- > O$	> F		(2)	$O^{2-} > F^- > F$	>0	
 Nuclear charge Nuclear charge + Screening constant Nuclear charge - Screening constant Nuclear charge - Screening constant Nuclear charge + Charge on ion Which of the following molecule does not possess permanent dipole moment? NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ According to VSEPR theory shape of ClF₃ is: T-shaped Triangular Tetrahedral Square planar Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: Two Four Six Eight Which of the following has highest lattice energy? KF NaF NaF NaF NaF NaF NaF Glauber's salt is: MgSO₄.7H₂O Na₂SO₄.10H₂O 		(3)	$F^->O^{2-}>F$	>0		(4)	$O^{2-} > O > F^-$	> F	
 (2) Nuclear charge + Screening constant (3) Nuclear charge - Screening constant (4) Nuclear charge + Charge on ion 5. Which of the following molecule does not possess permanent dipole moment? (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ 6. According to VSEPR theory shape of ClF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 	4.	Effe	ective nuclear	charge	of an ion is :				
 (3) Nuclear charge - Screening constant (4) Nuclear charge + Charge on ion 5. Which of the following molecule does not possess permanent dipole moment? (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ 6. According to VSEPR theory shape of ClF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 		(1)	Nuclear charg	ge					
 (4) Nuclear charge + Charge on ion 5. Which of the following molecule does not possess permanent dipole moment? NF₃ CH₂CI₂ NO₂ BF₃ 6. According to VSEPR theory shape of CIF₃ is: T-shaped Triangular Tetrahedral Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: Two Four Six Eight 8. Which of the following has highest lattice energy? KF NaF NaF CsF RbF 9. Glauber's salt is: MgSO₄.7H₂O Na₂SO₄.10H₂O 		(2)	Nuclear charg	ge + Se	creening consta	ant			
 Which of the following molecule does not possess permanent dipole moment? (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ According to VSEPR theory shape of CIF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 		(3)	Nuclear charg	ge – Sc	reening consta	int			
 (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ 6. According to VSEPR theory shape of ClF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 		(4)	Nuclear charg	ge + C	harge on ion				
 (1) NF₃ (2) CH₂Cl₂ (3) NO₂ (4) BF₃ 6. According to VSEPR theory shape of CIF₃ is: (1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 	5.	Wh	ich of the follo	wing	molecule does	not p	ossess perman	ent di	pole moment ?
(1) T-shaped (2) Triangular (3) Tetrahedral (4) Square planar 7. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO ₄ .7H ₂ O (2) Na ₂ SO ₄ .10H ₂ O									
 Maximum number of water molecules that one water molecule can hold through hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 	6.	Acc	cording to VSE	PR th	eory shape of (CIF ₃ is	3:		
hydrogen bonding is: (1) Two (2) Four (3) Six (4) Eight 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO ₄ .7H ₂ O (2) Na ₂ SO ₄ .10H ₂ O		(1)	T-shaped	(2)	Triangular	(3)	Tetrahedral	(4)	Square planar
 8. Which of the following has highest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO₄.7H₂O (2) Na₂SO₄.10H₂O 	7.	Ma hyc	ximum numb Irogen bondin	er of g is:	water molecul	es tha	at one water r	nolec	ule can hold through
(1) KF (2) NaF (3) CsF (4) RbF 9. Glauber's salt is: (1) MgSO ₄ .7H ₂ O (2) Na ₂ SO ₄ .10H ₂ O		(1)	Two	(2)	Four	(3)	Six	(4)	Eight
9. Glauber's salt is : (1) MgSO ₄ .7H ₂ O (2) Na ₂ SO ₄ .10H ₂ O	8.	Wh	ich of the follo	wing	has highest lat	tice er	nergy ?		
(1) $MgSO_4.7H_2O$ (2) $Na_2SO_4.10H_2O$		(1)	KF	(2)	NaF	(3)	CsF	(4)	RbF
	9.	Gla	uber's salt is :						
(3) CuSO ₄ .5H ₂ O (4) FeSO ₄ .7H ₂ O		(1)	$MgSO_4.7H_2C$)		(2)	Na ₂ SO ₄ .10H	20	
(A. S.) (A.		(3)	CuSO ₄ .5H ₂ C)		(4)	FeSO ₄ .7H ₂ O		

10.	KO ₂ is used in oxygen cylinders in space as it:						
	(1) absorbs CO ₂	(2) produces O ₃					
	(3) absorbs moisture	(4) absorbs CO ₂ and increases O ₂					
11.	In "Inorganic benzene" hybridization	of B and N respectively is:					
	 Both have sp² 	(2) sp^2 and sp^3					
	(3) Both have sp ³	(4) sp^3 and sp^2					
12.	Three oxygen atoms of [SiO ₄] ⁴⁻ are s	hared in :					
	(1) Pyrosilicate	(2) Linear chain silicate					
	(3) Sheet silicate	(4) Three dimensional silicate					
13.	Number of P-O-P bonds in cyclic me	taphosphoric acid are :					
	(1) Zero (2) Two	(3) Three (4) Four					
14.	Oxyacid of Sulphur which contains le	one pair on Sulphur is :					
	(1) Sulphuric acid	(2) Pyrosulphuric acid					
	(3) Peroxy disulphuric acid	(4) Sulphurous acid					
15.	Order of acidity of the following is:						
	(1) HClO ₄ < HClO ₃ < HClO ₂ < HClO						
	(2) HCIO < HCIO ₄ < HCIO ₃ < HCIO ₂						
	(3) HClO < HClO ₂ < HClO ₃ < HClO ₄						
	$(4) HClO_4 < HClO_2 < HClO_3 < HClo$						
16.	Which of the following have same nu	mber of electron pair on Xenon atom ?					
	(a) XeO ₃ (b) XeOF ₄	(c) XeF ₆					
	(1) Only (a) & (b)	(2) Only (b) & (c)					
	(3) Only (a) & (c)	(4) (a), (b) & (c)					
17.	Which of the following is not coloured	1?					
	(1) $KMnO_4$ (2) $K_2Cr_2O_7$	(3) CuCl ₂ (4) TiO ₂					
CPG-E	E-2018/(Chemistry)-(SET-X)/(A)	250 SIA 358					

18	Which of the f	ollowing shows m	nagnetic moment 1.74 BM ?
	(1) [CoCl ₄] ⁴⁻		(2) $[Ni(CN)_6]^{2-}$
	(3) TiCl ₄		(4) $[Cu(NH_3)_4]^{2+}$
19	Cis and trans o	complexes of [PtA;	$_{2}X_{2}$] are distinguished by :
	(1) Kurnakov	test	(2) Ring test
	(3) Chromyl C	hloride test	(4) Carbylamine test
20	. IUPAC name o	f [Ni(NH ₃) ₄][NiC	
	Tetra chlor	o nickel (II) – Tetra	a ammine nickelate (0)
	(2) Tetra amm	ine-nickel (II) – Te	etra chloro nickelate (II)
	(3) Tetra chlore	o nickel (II) – Tetra	a ammine nickel (II)
			tra chloro nickel (II)
21.	Term symbol of		WAY
	(1) ³ F ₄	(2) ³ F ₂	(n) 2 m
		2	(3) $^{2}D_{0}$ (4) $^{2}D_{5/2}$
22.	and critical P. A.	ransition in $[Ti(H)]$	$(2O)_6$] ³⁺ is:
	$(1) {}^2T_{2g} \rightarrow {}^2Eg$		(2) ${}^{2}Eg \rightarrow {}^{2}T_{2g}$
	(3) ${}^{2}A_{2g} \rightarrow {}^{2}T_{2g}$	g	(4) ${}^{2}T_{2g} \rightarrow {}^{2}A_{2g}$
23.	In octahedral fie	ld which of the fol	llowing has zero crystal field stabilization energy ?
	(1) Co ²⁺ (low sp	pin)	(2) Fe ³⁺ (low spin)
	(3) Fe ³⁺ (high š	pin)	(4) Cr ³⁺ (high spin)
24.		e is shown by follo	
	(1) U, Np	(2) Pu, Am	
25	- Service Constant		(3) Am, Cm (4) Np, Pu
20.	which of the foll	owing lanthanide	is paramagnetic?
	(1) Sm^{3+}	(2) La ³⁺	(3) Lu^{3+} (4) Yb^{3+}
26,	The complex whi	ch does not obey	18 electron rule is :
	 Fe₂(CO)₉ 	(2) Fe(CO) ₅	(3) V(CO) ₆ (4) Ni(CO) ₄
CPG-E	E-2018/(Chemistry	y)-(SET-X)/(A)	1,7 1,4 1,4
			P. T. O.

Which of the following will give cross linked silicone					polymer on hydrolysis?					
		$RSiCl_3$		R_3SiCl		R_4Si			R_2SiCl_2	
28.	An	nong all which	ı is not	a lewis acid	?					
	(1)	$AICl_3$	(2)	SO_2	(3)	SbF_5		(4)	CN-	
29.	The	e donor atoms	of the	hard bases h	nave:					
	(1)	Low polariza	ation		(2)	High elec	ctronega	ativ	rity	
	(3)	Low electron	egativi	ty	(4)	Both (1)	& (2)			
30.	The	e behaviour sl nydrous H_2SC	hown b	y urea in fo spectively :	llowing	solvents	(a) wate	er (l	o) liquid ammonia (c)	
	(1)	Base, acid, no	on-elec	trolyte	(2)	Non elec	trolyte,	bas	e, acid	
	(3)	Non electroly	yte, aci	d, base	(4)	Acid, bas	ie, non-	elec	trolyte	
31.	Ag	AgNO ₃ on treatment with hypo gives white ppt which changes to black after some time black ppt is:								
	(1)	$Ag_2S_2O_3$	(2)	Ag_2SO_4	(3)	Ag_2S		(4)	$Ag_{2}S_{4}O_{6}$	
32.	Which of the following is used to remove SO_4^{2-} ions from a mixture of SO_4^{2-} , $C_2O_4^{2-}$ and CI^- ions?									
	(1)	$Ba(OH)_2$	(2)	NaOH	(3)	КОН	20	(4)	$BaSO_4$	
33.	The	myoglobin is	3:							
	(1)	Monomer	(2)	Dimer	(3)	Trimer		(4)	Tetramer	
34.	Res	idual entropy	is:							
		429 MART CONTROL STATE AND ADMINISTRATION OF THE CONTROL OF THE CO								
	(2)									
	(3) The entropy arising out of the defects in crystalline substance									
	(4)	None of these								
35.	Which of the following is correct one?									
	(1)	1 eV = 80.656	cm-1		(2)	1 eV = 80	6.56 cm	-1		
	(3)	1 eV = 8065.6	cm-1		(4)	1 eV = 8.0)656 cm	-1	65	
CPG-E	E-20	18/(Chemistr	y)-(SE1	(-X)/(A)						

- 36. Critical temperature, T_C is related to Vander Waal's constants 'a' and 'b' by relation:
 - (1) $T_C = \frac{27Ra}{8b}$ (2) $T_C = \frac{8ab}{27R}$ (3) $T_C = \frac{8a}{27Rb}$ (4) $T_C = \frac{27R}{8ab}$

- The Boyle temperature is that at which second Virial coefficient of real gas is :
 - (1) One
- (2) Two
- (3) Three
- (4) Zero
- The average momentum of a particle can be estimated quantum mechanically using
 - $(1) \langle p_x \rangle = \frac{\int \psi \psi^{\otimes} dx}{\int \psi \hat{p}_x \psi^{\otimes} dx}$

(2) $\langle p_x \rangle = \int \psi \hat{p}_x \psi^{\otimes} dx$

- (3) $\langle p_x \rangle = \frac{\int \psi \bar{p}_x \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$
- $(4) < p_x > = \frac{\int \hat{p}_x \psi \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$

where $\langle p_x \rangle$ represent average momentum of a particle moving in a direction parallel

- 39. 50 ml of 0.1 M NaOH is added to 49 ml of 0.1 M HCl. The pH of the resulting solution
 - (1) 11
- (2) 9
- (3) 8
- (4) 13

- 40. Henry's law is applicable to real gases, if:
 - (1) Pressure is high

- (2) Solubility of gas is appreciable
- (3) Dissolved gas react with solvent
- (4) Temperature is not too low
- 41. The operator for energy is:
 - h ∂/2
- (2) $\hbar \frac{\partial}{\partial t}$
- (3) $i\hbar \frac{\partial}{\partial t}$
- (4) $-i\hbar \cdot \frac{\partial}{\partial t}$
- The rate law for the multiple chain reaction

$$H_2 + Br_2 \rightarrow 2HBr$$
 is

$$\frac{d}{dt}[HBr] = \frac{kr_1[H_2][Br_2]^{3/2}}{[Br_2] + kr_2[HBr]}$$

Which of the following represent rate law in the limit of high pressure of bromine?

(1) Rate = $kr_1[Br_2]$

(2) Rate = kr₁ = [H₂]

(3) Rate = $kr_1[H_2][Br_2]$

(4) Rate = $kr_1[H_2][Br_2]^{1/2}$

CPG-EE-2018/(Chemistry)-(SET-X)/(A)

P. T. O.

- **43.** If $\left(\frac{\partial P}{\partial T}\right)_V = \frac{\alpha}{\beta}$; then according to Maxwell's relation:
 - (1) $\left(\frac{\partial S}{\partial V}\right)_T = -\frac{\alpha}{\beta}$

(2) $\left(\frac{\partial S}{\partial V}\right)_T = \frac{\alpha}{B}$

(3) $\left(\frac{\partial S}{\partial V}\right)_T = \frac{\beta}{\alpha}$

- (4) $\left(\frac{\partial S}{\partial V}\right)_T = -\frac{\beta}{\alpha}$
- 44. Saturated solution of KNO₃ is used to make a salt bridge because:
 - velocities of K⁺ and NO₃ ions are nearly same
 - (2) velocity of K⁺ is greater than that of NO₃⁻ ions
 - (3) velocity of NO₃ is greater than that of Na⁺ ions
 - (4) None of the above
- 45. Stefen law states that the total amount of energy E radiated by perfectly black body per unit area per unit time is directly proportional to:
 - (1) T
- (2) T^2
- $(3) T^3$
- (4) T^4
- 46. The Brunauer, Emmett and Teller (BET) equation relating to adsorption is expressed as:
 - (1) $\frac{P}{v_{\text{total}} (P_0 P)} = \frac{1}{v_{\text{mono}} C} \frac{C 1}{v_{\text{mono}}} \left(\frac{P}{P_0} \right)$
 - (2) $\frac{P}{v_{\text{total}} (P_0 P)} = \frac{1}{v_{\text{mono}} C} + \frac{C 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$
 - (3) $\frac{P}{v_{\text{total}} (P_0 P)} = \frac{1}{C} + \frac{C 1}{v_{\text{mono}} C} \left(\frac{P}{P_0} \right)$
 - (4) $\frac{p}{P_0 p} = \frac{1}{v_{\text{mono}} C} + \frac{C 1}{v_{\text{mono}} C} \left(\frac{p}{P_0}\right)$

Where all the symbols have their usual meanings.

- 47. An organic fatty acid forms a surface film on water that obeys two-dimensional ideal gas law. If the surface tension lowering is 10 mN⁻¹ at 25°C, then surface excess concentration is given by:
 - $(1) \ 40.4 \times 10^{-6} \ mol \, m^{-2}$

(2) $4.04 \times 10^{-6} \ mol \ m^{-2}$

(3) $404 \times 10^{-6} \ mol \ m^{-2}$

(4) $0.404 \times 10^{-6} \ mol \, m^{-2}$

P. T. O.

 48. The molecule which is IR inactive but Raman active is: HCl SO₂ N₂ Protein 49. In the lead-acid battery during charging, the Cathode reaction is: Reduction of Pb⁺² to Pb Formation of PbSO₄ None of these 48. The molecule which is IR inactive but Raman active is: HCl SO₂ Protein 49. In the lead-acid battery during charging, the Cathode reaction is: Reduction of PbCO₂ None of these 	isotope of
(1) Reduction of Pb ⁺² to Pb (2) Formation of PbSO ₄	isotope of
	isotope of
50. The number of α and β particles emitted by $\frac{218}{81}Ra$ in changing to a stable $\frac{206}{82}Pb$ will be:	
(1) 1 and 2 (2) 2 and 4 (3) 1 and 4 (4) 3 and 4	
 51. Select the correct statement from the following: (1) Work is a state function (2) Delayed flourescence is phosphorescence (3) Quantum yield of any reaction is always positive (4) The molar extinction coefficient is unit less 	
52. There cannot be a quadrupole point on the phase diagram for one-componer because the degree of freedom is:	ıt system,
(1) 3 (2) 4 (3) -1 (4) Zero	
53. Milk is a/an:	
(1) Gel (2) Emulsion (3) Suspension (4) Solution	
54. Isotonic solutions have the same:	
(1) Viscosity (2) Surface tension	
(3) pH . (4) Osmotic pressure	
55. The rotational spectra of HCl molecule suggest that rotational lines are separated by 22.70 cm ⁻¹ . The internuclear bond length will be estiminated (all notations have their usual meanings): (1)	equally lated by
CPG-EE-2018/(Chemistry)-(SET-X)/(A)	РТО

- 56. Cellulose nitrate relates to which of the following category of the polymers? (1) Synthetic polymers (2) Natural polymers (3) Semi Synthetic polymers (4) None of these 57. Which of the following monomers are not suitable for condensation polymerization? (1) Butane-dioic acid and glycol
 - (2) Propanoic acid and ethanol
 - (3) Diamines and dicarboxylic acid
 - (4) Hydroxy acid
- 58. The transition zone for Raman spectra is:
 - (1) between electronic levels
 - (2) between magnetic levels of nuclei
 - (3) between magnetic levels of unpaired electrons
 - (4) between vibrational and rotational levels
- 59. Dry ice is used for fire extinguishers. It is stored in the cylinder in solid form. When sprayed on a fire, it quickly changes into gas called CO2. The change of state is called :
 - (1) Sublimation

(2) Evaporation

(3) Condensation

- (4) Distillation
- 60. For an isentropic change of state:
 - (1) dH = 0
- (2) dT = 0
- (3) ds = 0
- (4) ds = 1

- 61. Which of the following is a correct relation?
 - (1) $pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a + \frac{1}{2}pk_b$ (2) $pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a \frac{1}{2}pk_b$
 - (3) $pH = \frac{1}{2}pk_w + \frac{1}{2}k_a \frac{1}{2}k_b$
 - (4) $pH = \frac{1}{2}pk_w \frac{1}{2}k_a + \frac{1}{2}k_b$

Where all the notation have their usual meanings.

- 62. The IR absorption at 1665 cm-1 in salicylic acid is due to:
 - (1) C-H bending

(2) O - H bending

(3) O – H stretching

(4) C = O stretching

- 63. No Bragg reflection of X-rays from a crystal will be observed, if d_{ikl} is less than:
 - (1) \(\lambda\)
- (2) \lambda/2
- (3) \lambda/3
- (4) \(\lambda/4\)
- 64. The number of collisions, Z11 between the reacting molecules per sec per dm3, according to kinetic theory of gases is expressed as:
 - (1) $Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma^2(n^2) \overline{C}$

(2) $Z_{11} = \sqrt{2}\pi\sigma^2(n^2)\overline{C}$

(3) $Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma(n^2) \overline{C}$

- (4) $Z_{11} = \sqrt{2\pi\sigma^2(n)C}$
- 65. In a closed room of 500 m³ a perfumed bottle is opened. The room develops smell. This is due to opened. The room develops smell. This is due to :
 - (1) Diffusion
- (2) Absorption
- (3) Desorption
- (4) Viscosity

- **66.** $\Psi_{21(-1)}$ represents:
 - (1) 2 ps orbital (2) 2 ps orbital
- (3) 2 pz orbital
- (4) None of these
- 67. Which of the following will give meso form with Baeyer's reagent?

(1)
$$H_3C = C CH_3$$

$$H$$

(2)
$$H_3C = C H$$

$$CH_3$$

(3)
$$Me$$
 $C = C$ Et Me

(4)
$$Ph = C COOH$$

68. The IUPAC name of compound:

- (1) 2-bromo-3-carboxy-5- hydroxy-1-nitrobenzene
- (2) 2-bromo-5-hydroxy-3-nitrobenzoic acid
- (3) 4-bromo-3-carboxy-5-nitrophenol
- (4) 4-bromo-3-carboxy-5-nitro-1-hydroxybenzene

- 69. In structural representation of molecules, the prefixes Z and E stands for :
 - (1) Zeigler-Erythro

(2) Zurammen-Estrogen

(3) Zeigler-Erhard

(4) Zusamann-Enteggen

70. β-phenylethyl chloride is the minor product obtained by reaction of chlorine with :

(1)
$$CH = CH_2$$

$$(4) \qquad C = CH$$

71.
$$CH_2(COOEt)_2 + (CH_2)_3 Br_2 \xrightarrow{NaOEt} 1 \xrightarrow{H_3O^{\oplus}} 1$$

II is:

72.
$$H_3C - C = C - CH_3 + B_2H_6 \rightarrow A - \frac{H_3C COOH}{}{} B$$

B is:

(1)
$$CH_3 = C CH_3$$

$$C = C CH_3$$

$$C = C CH_3$$

$$C = C CH_3$$

(2)
$$H_3C$$
 $C = C$ $COCH_3$ CH_3

(3)
$$H_3C = C \xrightarrow{CH_3} H$$

(4)
$$H_3C = C$$
 CH_3

- 73. A solution of (+) 2-chloro-2-phenylethane in toluene racemises slowly in presence of small amount of SbCls due to formation of:
 - (1) Carbanion
- (2) Carbene
- (3) Carbocation
- (4) Free radical
- 74. Which one of the following radicals exists in free state?
 - (1) $(C_6H_5)_3 \mathring{C}$

(2) (H₃C)₃ - Č

(4)
$$H_3C - C - CH = CH - CH_2$$

 H_3C

75. In the given reaction:

$$\xrightarrow{NBS/CCI_4} A \xrightarrow{H_2O/K_2CO_3} B$$

B will be:

- 76. Carbenes give which of the following reactions?
 - Addition with alkenes
 - Insertion into C-H bonds
 - Addition with arynes
 - 4. Insertion into C P bonds
 - (1) Only 4
- (2) 3 and 1
- (3) 2 and 4
- (4) 1, 2 and 3
- 77. Which one of the following ylides give cyclopropane derivative with α , β -unsaturated carbonyl compounds?
 - (1) Phosphorus ylide

(2) Sulphoxonium ylide

(3) Sulphonium ylide

(4) Nitrogen ylide

CPG-EE-2018/(Chemistry)-(SET-X)/(A)

P. T. O.

- 78. Carbonyl compounds react with which of the following compounds to form enamines?
 - (a) $C_6H_5NH_2$

(b) C₆H₉NHCH₃

(d) $\binom{O}{N}$

Select the correct answer from the codes given below:

(1) Only a

(2) Only c & d

(3) a, c & d

- (4) b, c & d
- 79. Arrange the following compounds in order of increasing reactivity towards aqueous formic acid:

order is:

(1) C < B < A

(2) B < A < C

(3) A < C < B

- (4) A < B < C
- 80. Arrange the following reactions in order of decreasing amount of isocyanide formed:
 - (A) EtCl+NaCN → EtCN+EtNC
 - (B) EtCl+AgCN → EtCN+EtNC
 - (C) EtI + NaCN → EtCN + EtNC
 - (1) A > B > C
- (2) B > A > C
- (3) C > B > A (4) C > A > B
- 81. Arrange the following compounds in decreasing order of reactivity with NBS/CCl4 /hv:
 - (a) PhCH3

(b) PhCH₂CH₂CH₃

(c) PhCH₂CH = CH₂

(d) Ph - CH - CH = CH₂ CH_3

- d, c, a, b
- (2) d, c, b, a
- (3) a, b, c, d (4) a, c, b, d

	(1) CH ₃ COOH	(2)	CH ₃ COCI	
	(3) CH ₃ CH ₂ COOH	(4)	HOOC CH ₂ CH ₂	СООН
83.	In which compound electrules?	trophilic addition t	akes place accordir	ng to anti-Markovnikov
	(a) $CH_2 = CH - NO_2$	(b)	$CH_2 = CH - CHO$	
	(c) $H_3C = CH - CN$	(d)	$CH_3 - CH = CH_2$	
	Answer is:			
	(1) a, b and c (2)	a, b, c & d (3)	Only d (4	Only a
84.	For electrophilic addition (a) $CH_3 - CH = CH_2$: al (b) $CH_3 - C = CH$: viny	kyl carbocation	ir is correctly mate	hed?
	(c) $CH_2 = CH - CH = CH$ (d) $C_6H_5 - CH = CH - CH$			
	Select the correct answer	11		
	(1) a and d (2)	a, b and d (3)	b, c and d (4	a, c and d
85.	Which among the follow (a) Br ₂		syn-addition with a	ilkenes :
	(c) OsOH NaSO ₃ H H		$H_2 \mid Ni \mid \Delta$	
	Select the correct answer	2017/11	STORE RESPONSE	
	(1) Only a (2)	b and c (3)	b, c and d (4	Only d
86.	In the given reaction :	H_3C $CH = CH_2 -$	$Hg(OAc)_2 \longrightarrow [X]$	
	[X] will be:		QН	
	(1) CH ₃ CH ₂ CH ₂ OH	(2)	$CH_3 - CH - CH_3$	
	OH (3) CH ₃ - CH - CH ₂ OA	(4)	H ₃ CCH ₂ CH ₂ OAc	
CPG-E	E-2018/(Chemistry)-(SET	-X)/(A)		P. T. O.

82. Which of the following will undergo free radical bromination most readily?

- 87. Which one of the following compounds undergoes thermal elimination reaction p
 - (1) Acetate
- (2) Chlorides
- (3) Bromide
- (4) Alcohols

88. In the given reaction

$$\begin{array}{ccc} CH_3 & B_7 \\ H_3C - C - CH_2 - CH - CH_3 & \xrightarrow{Alc\ KOH} X \\ CH_3 & CH_3 & & \end{array}$$

[X] will be:

(1)
$$H_3C - C - CH = CH - CH_3$$

 CH_3

(1)
$$H_3C - C - CH = CH - CH_3$$
 (2) $H_3C - C - CH_2 - CH = CH_2$ CH_3 CH_3

(3)
$$H_3C - C = C - CH_2CH_3$$
 (4) $H_2C = C - CH - CH_2 - CH_3$ CH_3CH_3

(4)
$$H_2C = C - CH - CH_2 - CH_3$$

 $CH_3 CH_3$

Arrange reactivity of alcohols in decreasing order for dehydration reaction:

(a)
$$CH_3 - CH - CH_3$$

(b)
$$H_3C - C - CH_3$$

(c)
$$H_5C_6 - C - CH_3$$

 CH_3

(d)
$$H_3C\ CH_2\ OH$$

Select the answer:

- (1) c, b, d, a
- (2) b, c, d, a
- (3) b, c, a, d
- (4) c, b, a, d
- 90. Arrange acidity of given alcohols in decreasing order:
 - (a) 4-nitro-1-butanol

(b) 2-nitro-1-butanol

(c) 3-nitro-1-butanol

(d) 1-butanol

Correct answer is:

(1) a, b, d, c

(2) a, b, c, d

(3) b, c, a, d

(4) b, c, d, a

91. The ether
$$\bigcirc -O-CH_2-\bigcirc \bigcirc$$
 When treated with HI gives :

92. Formaldehyde does not undergo following reaction:

(1) Reduction

(2) Aldol condensation

(3) Polymerisation

(4) Oxidation

93.
$$B \leftarrow \frac{KMnO_4}{alkaline} \longrightarrow \frac{HCO_3H}{A}$$

A and B are:

(3) A is trans, B is cis

(4) A is cis, B is trans

94.
$$H_2C = CH - CH = CH_2 \xrightarrow{H_2} A \xrightarrow{O_3/H_2O} B$$

A and B are:

(1) $CH_2 = CH - CH_2 CH_3, CH_2 CH_2 CHO, HCHO$ A
B

(2)
$$H_3C$$
 $CH = CH - CH_3$, CH_3CHO

- (3) Both correct
- (4) None is correct

95. Dehydration will be maximum in :

(2)
$$H_3C - C - CH - CH_2 - CH_3$$

 OH
 CH_3
(4) $CH_3 - C - OH$

(3)
$$H_3C - CH - C - OH$$

OH

(4)
$$CH_3 - C - OF CH_3$$